Communication: Nanosize-induced restructuring of Sn nanoparticles.

نویسندگان

  • Sareh Sabet
  • Payam Kaghazchi
چکیده

Stabilities and structures of β- and α-Sn nanoparticles are studied using density functional theory. Results show that β-Sn nanoparticles are more stable. For both phases of Sn, nanoparticles smaller than 1 nm (~48 atoms) are amorphous and have a band gap between 0.4 and 0.7 eV. The formation of band gap is found to be due to amorphization. By increasing the size of Sn nanoparticles (1-2.4 nm), the degree of crystallization increases and the band gap decreases. In these cases, structures of the core of nanoparticles are bulk-like, but structures of surfaces on the faces undergo reconstruction. This study suggests a strong size dependence of electronic and atomic structures for Sn nanoparticle anodes in Li-ion batteries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level.

Nanoparticles are important catalysts for petroleum processing, energy conversion, and pollutant removal. As compared to their bulk counterparts, their often superior or new catalytic properties result from their nanometer size, which gives them increased surface-to-volume ratios and chemical potentials. The size of nanoparticles is thus pivotal for their catalytic properties. Here, we use sing...

متن کامل

Prompt deliquescence and efflorescence of aerosol nanoparticles

Literature reports have differed on the possibilities of discontinuous and continuous (i.e., prompt and nonprompt) deliquescence and efflorescence of aerosol particles in the nanosize regime. Experiments reported herein using a hygroscopic tandem nano-differential mobility analyzer demonstrate prompt deliquescence and efflorescence of ammonium sulfate particles having diameters from 6 to 60 nm....

متن کامل

Synthesis of nanosize-controllable copper and its alloys in carbon shellsw

A very simple method for synthesizing nanosize-controllable (4–40 nm) metals (Cu, Ag, Pd, Rh and Ni) or alloys within carbon shells has been developed. The thickness of the carbon shell that prevents the core metals from being aggregated or oxidized ranges from 3–5 nm. In addition, the synthesized metal nanoparticles exhibit a correlation between dpZ/R (Z = valence of metal and R = atomic radiu...

متن کامل

Synthesis of Sn 0.986 Ni 0.014 O Nanoparticles and Study of Their Optical Band Gap

Sn 0.986 Ni 0.014 O nanoparticles have been synthesized by a simple co-precipitation method. Nanoparticles crystallize in lower temperature (350°C) and shorter time (2h) respect to other methods. The sample characterized by various standard techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Atomic absorption spectroscopy (AAS) and UV–Vis spectroscopy. T...

متن کامل

Synthesis of nanosize-controllable copper and its alloys in carbon shells.

Nanosize-controllable Cu, Ag, Pd, Ni, CuPd alloy and Cu-Ag bimetal encapsulated in inert carbon shells can be synthesized by carbonization of metal-cyclodextrin complexes with a remarkable capability of experimentally determining the size-dependent melting temperature depression of many metal or alloy nanoparticles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 140 19  شماره 

صفحات  -

تاریخ انتشار 2014